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We examine energy spectra, fluxes, and transfers of two-dimensional forced incompressible turbulence with
linear drag in the energy range, and find marked departures from 5/3 law and the idea of locality. Any attempt
to bring the system into the “ideal cascade state” would result either in spébtrgle or flux distortion. We
corroborate this observation by DNSpectral codeand eddy-damped quasinormal Markovian simulations.

We examine the energy peak wave numkgy in terms of drag coefficient, and energy dissipation ratg
and find a relatiork,~C(\*/e)*? to hold with C~50, but only within a limited range of parameters.

DOI: 10.1103/PhysReVE.63.020203 PACS nunerd7.10+g, 05.40-a, 47.27=i

The standard phenomenology of two-dimensiofiD) Recent papef6] corroborated and explained these findings,
turbulence calls for two inertial ranges, energy and enstrophfpy showing that any attempt to sharply arrest the inverse
(based on its two conserved integialwith the k%3 spec-  cascade would lead to large deviations.

trum in the energy rangébelow the source Many authors Linear drag, unlike hypofrictionlor stepwise friction,
have claimed to produce {{1-7]), with a few exceptions would arrest the inverse cascade smoothly, and thus produce
[8], who questioned its validity and universality. spectra close t& % over a sizable fraction of the energy

The upscale energy cascade to snkailh 2D turbulence range[7]. Yet, a closer examination, presented below, shows
necessitates a proper dissipation mechanism to arrest energych spectra to be at odds with the conventional ideas of
accumulation at the gravest modes, and stabilize it. The natuddocality” and “constant flux.” Indeed, varying forcing and
ral choice is the lineatbottom drag, combined with viscous dissipation allows some control of the spectral slope and the
dissipation at higtk. So we could write the Fourier expan- flux. However, the closer one brings the slope-t&/3, the

sion of the vorticity equation fot =A =3 (e, as more the spectral energy flux will deviate from a uniform
distribution over thek 5 interval, and vice versa; uniform
Gt o= — O+ kY £t fy (1) flux results in a steepened slope. This result could explain, in

particular, the discrepancy in the reported values of the Kol-
mogorov constan€y in the 5/3 law(see, i.e.[3]).
whereJ, denotes the Jacobialfy, {) = dxipdy{— dypdyd, v The linear drag appears naturally in many physical mod-
the viscosity coefficientexponenin=1 corresponds to ordi- els. For instance, it is used to model the effective drag cre-
nary viscosity, whilen>1 gives hyperviscosily andf the  ated by turbulent planetary boundary layer on large-scale at-
source of vorticity. Clearly, uniform(scale-independent mospheric flows. It tends to arrest the inverse cascade at
drag A, destroys “dissipation free inertial interval,” and some wavelength #/k,, associated with the energy peak.
leads to significant changes of the energy transfers and fluxéehis leads to the basistill largely open problem of param-
at low k. etrizing it in terms of the external forcing-dissipation. We
So all previous attempts to reproduce the “universal in-addressed the issues of nonuniversality and parametrization
verse cascade” would either confine spectral range to a closef k;, in a series of numeric experiments.
proximity of the source, or impose some selective scale de-
pendent dissipation at loW or parametrize the “large-scale
backscatter” onto inertial-range modes, pretending the sys- I. DNS EXPERIMENTS
tem could be formally extended into smaller and smadtler
We mention two examples of scale-selective friction: We carried out numerical simulations by a fully dealiased
step-wise linear drag confined to the lowest mof&jsand  pseudospectral methdd 0] at resolution 512 Time step-
hypo-friction —\k~2"Z, defined by negative powers of the ping was performed by the third order Adams-Bashforth
Laplacian[8,9]. method, and forcing was implemented like[B]. Namely,
Step-wise linear drag created the desired effectfen- we took a Markovian processf, j,;=A(1-r?)%'?
ergy spectrain paper 3], but it had limited spatial resolution +rf,; (j denotes time stgp of amplitudeA, correlation
and moderate Reynolds numbers. Bof8kperformed high-  radius 1/(%-r), and random uniform phase-distributiéron
resolution long-time simulations with hypo-friction, and his [0,27], localized within narrow spectral rangek;(- 2 ks
work led to unexpected results. While steep hypo-friction+2) in the vicinity of forcing wave-numbek;. In most
made spectral fluxes nearly uniform, the energy spectra deexperiments we used two valuds=100 and 150. We also
viated strongly from the classicat 5/3 slope, up to—3.  varied coefficient, r=0.9 and 0.5, but found little effect.
We used different types of hyperviscosity=2 for the
forcing scalek;=100, andn=8 for k;=150. The system
*Present address: NCAR, P.O. Box 3000, Boulder, CO 80307. was integrated to a stationary state, and then we computed
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FIG. 1. Compensated energy spectea and spectral energy FIG. 2. Compensated energy spectea and spectral energy
fluxes (b) in DNS experiments fokh =0.015, 0.02, 0.03, 0.05, and fluxes (b) in DNS experiments forx=0.02, and 0.03 withk;
0.1 with k;=100. Thin line in(a) shows the Kolmogorov constant =150. Thin line in(a) showsC+2 for A=0.03.

Cy for A=0.03. . . .
« little bearing on the standard notion of “constant flux” and

_ “locality.” The latter would yield E(k) ~ |1 (k) |?"%5", ruled
stationary spectra by averaging over long time series. out by Figs. 1 and 2. Correspondingly, the Kolmogorov con-
Depending on\ the inverse cascade could penetrate t0stantCy , defined as£(k)k>JTI(k)| %2, changes from 4.5

different levels(in terms of the energy peak wave-number near the source, to 7.2 close to the energy déak line in
kp), before friction would stabilize it. In cases of loky  Fig. 1(a)]. Since all standard estimates®§ would try to fit
=5-10, spectra of realizations show large fluctuationst in the (undetermineyl spectral interval, variations of the
(though total energy remained stabl€o long time averag- reported values are not surprisifgge alsd3]).
ing O(1/A), may not guarantee a smooth mean spectrum, The appearance of spectral bulge also involves subtle
particularly at smallk. The spectra below are obtained by nonlocal processes, which couple energy carrying mades
averaging over time intervals ranging fromto 2/x. ~k, to the forcing scalé; (and abovek>k;). Our experi-
Figure Xa) shows time-averaged compensated energynents show that a poorly resolved enstrophy range tends to
spectraE (k)k> from experiments wittk;=100 performed suppress the enstrophy production, and at once drive the
for various\, but equal forcing. Figure(b) shows the cor-  pyige down, so the compensated spectra would become flat-
responding energy fluxeslII(k), defined as II(k) ter. Here we present an examplgig. 2) of the averaged
= —ReS§yt i (the asterisk denotes complex conjugationenergy spectra and fluxes for=0.02 and 0.03 as obtained in
and Re the real partin those experiments varied from 0.1  simulations withk;=150, i.e., enstrophy resolutioky,a,/K
to 0.015 through 0.05, 0.03 and 0.02. The compensated spes-1.6 versusk./ki~2.4 in Fig. 1. Compared to Fig. 1, the
tra are more or less flat over significant portion of the energyenergy spectra are much flat{erespite the greater value of
range, which indicates spectral slope close-8/3. Smallx,  TI(k)]. Notice, however, that they still exhibit the reverse
however, leads to a buildup of spectral bulge at the lowerflat energy-spectrum” versus “flat flux-spectrum” relation,
end of the—5/3 interval. There exist an optimalthat gives  as in Fig. 1.
the least deviation from thle > law and the smallest bulge.  Similar relations could be observed in the high-resolution
As \ drops below this value, the deviations frdm®3 grow  simulations by Boffettat al.[7] (their Fig. 2, and the labo-
stronger. ratory measurements by Paret and Tabel[ibgj] [compare
The spectral energy flux exhibits an opposite trendtheir Figs. Zb) and 3. All these results clearly indicate vari-
Clearly, bottom drag would not sustain a uniform flux in the able energy flux, in regions of the sustaine/3 energy
energy range. The surprising fact, however, comes in thelope. Both papers report an average valueCgf over a
relation between spectral slopes and fluxes. The most flajertain range of wave numbers, and ignore the variation of
(ideal k=) spectrum for moderata =0.05 in Fig. 1a),  the quantityE(k)k®3I1(k)| %2
corresponds to a highly nonuniform flux. In general, the The appearance of spectral bulge in our experiments
spectral plateau extends far beyond the regions of uniforngould be associated with the formation of strong, long-lived
flux. Conversely, decreasingflattens the energy flux, yet it vortices in the physical space, observed by Bd@ieIn the
builds a high spectral bulge at the lower end,E{&) devi- linear drag case these vortices are less robust than the hypo-
ates further from thé > law. frictional ones[8], their size rarely exceeding the forcing
We come to the conclusion that whatever mechanism susscale by a factor of 2 or 3, with the vorticity level capped
tains thek %3 spectra in the energy range, it should havebelow 10 rms. We saw such vortices emerge from the local
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FIG. 3. Compensated energy spectea and spectral energy * %
fluxes (b) in EDQM simulations with linear drag withh=0.03 1 *
(solid lineg and A=0.01 (dashed lines Thin line in (a) shows Fk # # 3
0.5C for A=0.03. 0
. C . . 0 0.05 0.1
extrema in the vorticity field, and found them in all realiza- 2z

tions of the system, under different conditions. Their forma-

tion, however, was strongly suppressed in situations with FIG. 4. (a) 50k, vsKk, for all DNS runs(*, +); (+) correspond to
poorly resolved enstrophy range, or sufficiently high totalthe series shown in Fig. 1b) Parameters e for all DNS runs.
(viscous plus dragdissipation at the forcing scale.

; /3
When the energy spectrum remained clos&18”, the  por jnstance, if one allows an infinitely long enstrophy range

vortices seemed to be short lived and of little dynamic im-y,o energy would go upscale, so its flTk(k)| near forcing

portance. Lowering drag coefficient made them more  5n46 would be equal to the forcing power. In our case the

sparse and intense, though vortex siméth vorticity run-  gngirophy range is poorly resolved, so the maximum of

cated above 2 rmsremained fairly stable, 2-3 times the ITI(k)| makes up approximately two thirds of the total

source scale. The vorticity kurtosis deviated from the Gausssower. We take hyperviscous dissipation with=8, and

ian value 3. However, even in simulations with relatively k2" =20 and coefficiena=0.4. as recommended,[ﬂ3]

low A=0.015, as in Fig. 1, it remained moderately high —~ T2X "~ . '

. X Figure 3a) presents compensated spedkaE (k) ob-
(around 7. Such a picture contrasts sharply with the hypOf'tained in simulations with the linear drag. The solid and

riction experiments, where kurtosis could grow higher orderdashed curves show equilibrium spectra Xor 0.03 and\

in magnitude. Intense vortices create strong circulation Z0nes g oq respectively '

around them. 'While .thei.r size remains small relative 'to Noteworthy is th.e almost ideal behavior of the compen-
Trllkp.’ their main contribution to the energy comes from cir- sated spectra: they all show a plateau in the interval adjacent
culation zones, and_those COU!d extend W?" Into the ENEI9Y, the forcing scaléthe A =0.01 spectrum exhibits a small
carrying (bulgg region. We discuss the “physical space vershoot, aa is too low). But once again an almost perfect

structure” of 2D turbulence, and its effect on spectra and 5,3 . .
) g - spectrum goes along a highly nonuniform flux, espe-
non-universality in a future publicatidri2]. . =
cially for largex=0.03.

The Kolmogorov constanti shown by the thin line of
Il. EDQNM CLOSURE Fig. 3@ for A=0.03, is somewhat lower than the value
The eddy_damped quasinorma| Marko\”aEDQNM) found in DNS, but EDQNM allows one to adeSt it by Chang-
closure model of isotropic 2D turbulence is formulated foring the coefficient, which we did not pursue.
the energy spectrug(k). It parametrizes the transfer term
Ty as a functional oE(k), in terms of relaxation times,
for triads k=p+q. The standard formdypq=1/(s+ pp Ill. ENERGY PEAK PARAMETRIZATION
+ 1) (552[13]' Chf/‘f- 8, involves combined shearing rate:  pere we shall briefly discuss parametrization of the arrest
m=a[ ol “E(1) dI]* of large eddiesl(<k) on thek-mode,  gcale, associated with the spectral energy peak. The dimen-

with coefficienta=0(1). ~ sional arguments suggest the estimate
EDQNM integration was performed at 128 resolution

with forcing scale 5& k<62, and forcing power/F,dk
=0.0004. EDQNM shares some features of the full system. kp~ky=(\%e)"2, 2
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in terms of the energy dissipation rate[or the maximal We conclude by reiterating our main points: tke>?®

value of [TI(k)| in the energy rande Similar and related spectrum in the forced 2D turbulence with linear drag seems
estimates ok, were proposed by many authors, starting withincompatible with the notion of locality and constant flux.
Lilly [14]. They all assume constant flux, but we saw it varyUniform energy flux coexists with large departures from the
appreciably over the spectral rang&k:]. Typically only a  5/3 law, whilek > spectra can coexist with highly variable
small fraction(between 1/5 and 1)3of e could reach the energy flux. Our conclusions are consistent with Maltrud and
energy peak region. The nonuniversal shapélok) makes vallis [4] that pinpoint highly nonlocal spectral transféns-
“universal scaling” fork, highly unlikely. In Fig. 4a) we  adg in the “inverse cascade.” Spectral transfers in our DNS
show the log-log plot ok, versus 5&, in all our experi-  eyperiments look similar to those p4].

ments(a factor of 50 was determined by the eyehaWe The parametrization of the energy peak ds,
could derive a factor close to 50, assumibge 2%k~ spec- ~C(\¥e)*2 could be valid within the “5/3 regime,” but is
trum betweenk, and k;. Thenk, is estimated byCk, '
with coefficientC= (3Cy)**~50-70 depending on the ill- 1 oinc ooen

defined value oCy neark; . Figure 4b) shows the region of ~ \\hjle some authors searched for spectral characterization
the explored parameters. At first glance the data seems 10 {ift oo cality(transfers and fluxese.g., the elongated triads
the relationk,~k, . Yet, closer inspection reveals that ratio o v/lis and Maltrud[4], our results indicate that many
Kp/SOk), varies noticeably, if one of two parametersor & gggential non-universal features of the inverse cascade could

remains fixed, While t_he oth_er va_ries. In a series of experipg properly addressed through the physical space analysis,
ments presented in Fig. 1 this ratio changed from 0.4 to 1'4currently in progres§12].

The actual dependence kf on \ is thus slower than power

3/2 as shown irf15]. However, limited spectral resolution The work was sponsored by the GTP-program at NCAR.
does not allow us sufficient variation of the linear drag, orThe authors thank J.R. Herring and F.V. Dolzhanskii for
energy flux, to draw definite conclusions. Within such limi- stimulating discussions. S.D. gratefully acknowledges a CO-
tations, we get an estimakg~50k, , for the energy spectra BASE grant from NRC and RFBR Grant Nos. 99-05-64351

not universal. Its possible extension to the variable flux re-

close tok 5%, and 99-05-64351.
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